Citation: | ZHANG Weichong, YANG Tao, LYU Nengchao. A Method for Classifying Driving Behavior Based on Vehicle Position and Speed[J]. Journal of Transport Information and Safety, 2023, 41(1): 85-94. doi: 10.3963/j.jssn.1674-4861.2023.01.009 |
[1] |
ZHAO T, XU Y, MONFORT M, et al. Multi-agent tensor fusion for contextual trajectory prediction[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2019.
|
[2] |
陆德彪, 郭子明, 蔡伯根, 等. 基于深度数据的车辆目标检测与跟踪方法[J]. 交通运输系统工程与信息, 2018, 18(3): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201803009.htm
LU D B, GUO Z M, CAI B G, et al. A vehicle detection and tracking method based on range data[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 55-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201803009.htm
|
[3] |
杨红红, 曲仕茹. 基于压缩感知尺度自适应的多示例交通目标跟踪算法[J]. 中国公路学报, 2018, 31(6): 281-290, 316. doi: 10.3969/j.issn.1001-7372.2018.06.015
YANG H H, QU S R. Traffic target tracking algorithm based on scale adaptive multiple instance learning with compressive sensing[J]. China Journal of Highway and Transport, 2018, 31(6): 281-290, 316. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.06.015
|
[4] |
冯汝怡, 李志斌, 吴启范, 等. 航拍视频车辆检测目标关联与时空轨迹匹配[J]. 交通信息与安全, 2021, 39(2): 61-69, 77. doi: 10.3963/j.jssn.1674-4861.2021.02.008
FENG R Y, LI Z B, WU Q F, et al. Association of vehicle object detection and the time-space trajectory matching from aerial videos[J]. Journal of Transport Information and Safety, 2021, 39(2): 61-69, 77. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.008
|
[5] |
CHOI S, KIM J, YEO H. Trajgail: generating urban vehicle trajectories using generative adversarial imitation learning[J]. Transportation Research Part C: Emerging Technologies, 2021(128): 91-113.
|
[6] |
LI X C, ZHAO K Q, C G, et al. Deep representation learning for trajectory similarity computation[C]. 34th International Conference on Data Engineering (ICDE), Paris, France: IEEE, 2018.
|
[7] |
马文耀, 吴兆麟, 杨家轩, 等. 基于单向距离的谱聚类船舶运动模式辨识[J]. 重庆交通大学学报(自然科学版), 2015, 34 (5): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201505026.htm
MA W Y, WU Z L, YANG J X, et al. Vessel motion pattern recognition based on one-way distance spectral clustering algorithm[J]. Journal of Chongqing Jiaotong University(Natural Science), 2015, 34(5): 130-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201505026.htm
|
[8] |
王培, 江南, 万幼, 等. 应用Hausdorff距离的时空轨迹相似性度量方法[J]. 计算机辅助设计与图形学学报, 2019, 31 (4): 647-658. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201904016.htm
WANG P, JIANG N, WAN Y, et al. Measuring similarity of spatio-temporal trajectory using hausdorff distance[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(4): 647-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201904016.htm
|
[9] |
CHOONG M Y, ANGELINE L, CHIN R K Y, et al. Modeling of vehicle trajectory clustering based on LCSS for traffic pattern extraction[C]. 2nd International Conference on Automatic Control and Intelligent Systems, Kota Kinabalu, Malaysia: IEEE, 2017.
|
[10] |
李颖, 赵莉, 赵祥模, 等. 基于大货车GPS数据的轨迹相似性度量有效性研究[J]. 中国公路学报, 2020, 33(2): 146-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002014.htm
LI Y, ZHAO L, ZHAO X M, et al. Effectiveness of trajectory similarity measures based on truck GPS data[J]. China Journal of Highway and Transport, 2020, 33(2): 146-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002014.htm
|
[11] |
ANDRE S F, DESPINA K, LUIS O A, et al. Multidimensional similarity measuring for semantic trajectories[J]. Transactions in Gis, 2016, 20(2): 280-298. doi: 10.1111/tgis.12156
|
[12] |
FHWA, Department of Transportation, America. NGSIM: Next generation simulation[EB/OL]. (2007-5-5)[2023-02-15].
|
[13] |
KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C]. 21st International Conference on Intelligent Transportation Systems(ITSC), Hawaii: IEEE, 2018.
|
[14] |
WANG J H, FU T, XUE J T, et al. Realtime wide-area vehicle trajectory tracking using millimeter-wave radar sensors and the open TJRD TS dataset, [EB/OL]. (2021)[2023-02-15].
|
[15] |
潘晓, 马昂, 郭景峰, 等. 基于时间序列的轨迹数据相似性度量方法研究及应用综述[J]. 燕山大学学报, 2019, 43 (6): 531-545.
PAN X, MA A, GUO J F, et al. A survey of research and application of track data similarity measurement based on time series[J]. Journal of Yanshan University, 2019, 43(6): 531-545. (in Chinese)
|
[16] |
丁华, 杨文杰, 姜超. 考虑轨迹分析的车辆异常行为辨识[J]. 重庆理工大学学报(自然科学版), 2022, 36(7): 62-69.
DING H, YANG W J, JIANG C. Vehicle abnormal behavior identification considering trajectory analysis[J]. Journal of Chongqing University of Technology(Natural Science), 2022, 36(7): 63-69. (in Chinese)
|
[17] |
LI H P. Typical trajectory extraction method for ships based on AIS data and trajectory clustering[C]. 2nd International Conference on Artificial Intelligence and Information Systems, chongqing: ACM, 2021.
|
[18] |
杨家轩, 刘元. 基于DBTCAN算法的船舶轨迹聚类与航路识别[J]. 上海海事大学学报, 2022, 43(3): 7-12.
YANG J X, LIU Y. Ship trajectory clustering and route recognition based on DBTCAN algorithm[J]. Journal of Shanghai Maritime University, 2022, 43(3): 7-12. (in Chinese)
|
[19] |
姜乔文, 刘瑜, 潭大宁, 等. 时空轨迹多维特征融合的行为规律挖掘算法[J/OL]. (2021-11-23)[2023-02-15].
JIANG Q W, LIU Y, TAN D N, et al. Behavior rule mining algorithm based on multi-dimensional feature fusion of spatio-temporal trajectory[J/OL]. (2021-11-23)[2023-02-15].
|
[20] |
ARIF A S, DEBI P D, SAMARJIT K, et al. Video trajectory analysis using unsupervised clustering and multi-criteria ranking[J]. Soft Computing, 2020, 24(21): 16643-16654.
|
[21] |
ZHAO P X, LIU X T, SHEN J W, et al. A network distance and graph-partitioning-based clustering method for improving the accuracy of urban hotspot detection[J]. Geocarto International, 2019, 34(3): 293-315.
|
[22] |
SHI Y, WANG D, TANG J B, et al. Detecting spatiotemporal extents of traffic congestion: A density-based moving object clustering approach[J]. International Journal of Geographical Information Science, 2021, 35(7): 1449-1473.
|
[23] |
YUE H Q, GUAN Q F, PAN Y T, et al. Detecting clusters over intercity transportation networks using k-shortest paths and hierarchical clustering: a case study of mainland china[J]. International Journal of Geographical Information Science, 2019, 33(5): 1082-1105.
|
[24] |
赵怀鑫, 邓然然, 张英杰, 等. 1种用于高速公路通行情况分析的收费数据挖掘方法[J]. 中国公路学报, 2018, 31(8): 155-164.
ZHAO H X, DENG R R, ZHANG Y J, et al. Method of mining fee data for expressway traffic analysis[J]. China Journal of Highway and Transport, 2018, 31(8): 155-164. (in Chinese)
|
[25] |
RODRIGUEZ M, COMIN C, CASANOVA D, et al. Clustering algorithms: a comparative approach[J]. PLoS ONE, 2019, 14(1): 107-141.
|
[26] |
王灵丽, 黄敏, 高亮. 基于聚类算法的交通网络节点重要性评价方法研究[J]. 交通信息与安全, 2020, 38(2): 80-88. doi: 10.3963/j.jssn.1674-4861.2020.02.010
WANG L L, HUANG M, GAO L. Methods of importance evaluation of traffic network node based on clustering algorithms[J]. Journal of Transport Information and Safety, 2020, 38(2): 80-88. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.02.010
|
[27] |
YANG J X, LIU Y, MA L Q, et al. Maritime traffic flow clustering analysis by density based trajectory clustering with noise[J]. Ocean Engineering, 2022(249): 111001.
|
[28] |
JIANG R Q, CHEN L L. Driving stress estimation in physiological signals based on hierarchical clustering and multi-view intact space learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 13141-13154.
|
[29] |
徐进, 陈莹, 陈海源, 等. 回头曲线路段的轨迹行为模式与事故风险[J]. 东南大学学报(自然科学版), 2020, 50(5): 973-982. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202005025.htm
XU J, CHEN Y, CHEN H Y, et al. Vehicle track patterns and accident risk on hairpin curves[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(5): 973-982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202005025.htm
|
[30] |
PU Z Y, CUI Z Y, TANG J J, et al. Multimodal traffic speed monitoring: A real-time system based on passive wi-fi and bluetooth sensing technology[J]. IEEE Internet of Things Journal, 2022, 9(14): 12413-12424.
|