Volume 40 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
CHEN Shi, HUANG Yuchun. A Matching Method for Longitudinal Cracks Based on Curvature Similarity[J]. Journal of Transport Information and Safety, 2022, 40(4): 119-127. doi: 10.3963/j.jssn.1674-4861.2022.04.013
Citation: CHEN Shi, HUANG Yuchun. A Matching Method for Longitudinal Cracks Based on Curvature Similarity[J]. Journal of Transport Information and Safety, 2022, 40(4): 119-127. doi: 10.3963/j.jssn.1674-4861.2022.04.013

A Matching Method for Longitudinal Cracks Based on Curvature Similarity

doi: 10.3963/j.jssn.1674-4861.2022.04.013
  • Received Date: 2022-04-21
    Available Online: 2022-09-17
  • Pavement cracks captured byon-board cameras are distributed randomly in shapes, and only a part of the longitudinal cracks on the roads can be captured each timedue to the limited field of view, resulting in incomplete detection of longitudinal cracks. The imagesacquired by the on-board cameras are transformed from oblique images intoorthographic images by using the inverse perspective transformation method, thus the perspective distortionof the longitudinal cracks are corrected. Then a deep learning based semantic segmentation network, Deeplab V3+, is used to extract the pixels of cracks. Based on curvature similarity, a two-stage method from coarse to fineis proposed for matching longitudinal cracks.The crack curve to be matched is divided into a sequence of overlapping sub-curves, which are characterized by descriptor of curvature, and the matched sub-curves are the matched parts of cracks. The curvature is used to express the local shape and trend features of sub-curvesas descriptors, then the Kd-tree nearest neighbor matching algorithm is used to perform coarse and fast matching of thedescriptors. According to the spatial distribution of longitudinal cracks in two consecutive road images, constraints are added when the crack curves are divided into sub-curves, the starting point of the crack curve in previousimage and the ending point in the next image areused asterminus of each respective sub-curve. Based on the results of coarse matching, the interval of segmentation curves is gradually reduced, and the normalized cross-correlation coefficient is iteratively improved until it is greater than or equal to the threshold or the number of iterations exceeds the maximum value to achieve fine adjustment of the results of coarse matching. To verify the accuracy of the algorithm, a case study is carried out with different types of continuous and longitudinal cracks on the campus roads of Wuhan University.The minimum error of the matching results can reach 0.688 pixels. Compared with the coarse matching, the error after fine adjustmentreduces by 24.19% on average. In order to further verify the stability of the algorithm under noise, crack pixel noise is added to the simulation environment.When the standard deviation of Gaussian noise increases from 0 to 2 pixels, the error of the matching results increases by only 1.083 pixels. Compared with the SIFT algorithm, the proposed method can achieve successful matching in all ten groups of experiments, while the matching results of the SIFT algorithm completely fails in two groups. It indicates that the algorithm proposed has better stability under normal and noise environment.

     

  • loading
  • [1]
    潘一凡, 张显峰, 童庆禧, 等. 公路路面质量遥感监测研究进展[J]. 遥感学报, 2017, 21(5): 796-811. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201705014.htm

    PAN Y F, ZHANG X F, TONG Q X, et al. Research progress in remote sensing monitoring of highway pavement quality[J]. National Remote Sensing Bulletin, 2017, 21(5): 796-811. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201705014.htm
    [2]
    WOLFSON H J. On curve matching[J]. IEEE Transactions on PatternAnalysis & Machine Intelligence, 1990, 12(5): 483-489. doi: 10.1109/34.55108
    [3]
    KONG W, KIMIA B B. On solving 2D and 3D puzzles using curve matching[C]. IEEE Computer Society Conference on Computer Vision & Pattern Recognition, Kauai, USA: IEEE, 2001.
    [4]
    CUI M, FEMIANI J, HU J, et al. Curve matching for open 2D curves[J]. Pattern Recognition Letters, 2009, 30(1): 1-10. doi: 10.1016/j.patrec.2008.08.013
    [5]
    PETRAKIS E, DIPLAROS A, MILIOS E. Matching and retrieval of distorted and occluded shapes using dynamic programming[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(11): 1501-1516. doi: 10.1109/TPAMI.2002.1046166
    [6]
    MAI F, CHANG C Q, HUNG Y S. Affine-invariant shape matching and recognition under partial occlusion[C]. 17th International Conference on Image Processing, Hong Kong, China: IEEE, 2010.
    [7]
    ALAHI A, ORTIZ R, VANDERGHEYNST P. Freak: Fast retina keypoint[C]. IEEE Conference on Computer Vision & Pattern Recognition, Providence, USA: IEEE, 2012.
    [8]
    杨宇, 赵成星, 张晓玲. 基于SURF和改进RANSAC的图像拼接方法[J]. 激光杂志, 2021, 42(4): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202104021.htm

    YANG Y, ZHAO C X, ZHANG X L. Image stitching method based on SURF and improved RANSAC[J]. Laser Journal, 2021, 42(4): 105-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202104021.htm
    [9]
    DAVID L. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [10]
    BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features(SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359. doi: 10.1016/j.cviu.2007.09.014
    [11]
    SONG Z L, ZHANG J. Remote sensing image registration based on retrofitted SURF Algorithm and trajectories generated from lissajous figures[J]. IEEE Geoscienceand Remote Sensing Letters, 2010, 7(3): 491-495. doi: 10.1109/LGRS.2009.2039917
    [12]
    吕岩, 曲仕茹. 基于SIFT的路面裂缝配准及拼接算法[J]. 公路交通科技, 2012, 29(2): 23-28. doi: 10.3969/j.issn.1002-0268.2012.02.005

    LYU Y, QU S R. An algorithm of pavement crack image registration and mosaic based on SIFT algorithm[J]. Journal of Highway and Transportation Research and Development, 2012, 29(2): 23-28. (in Chinese) doi: 10.3969/j.issn.1002-0268.2012.02.005
    [13]
    朱力强, 王春薇, 王耀东, 等. 基于特征点集距离描述的裂缝图像匹配算法研究[J]. 仪器仪表学报, 2016, 37(12): 2851-2857. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201612027.htm

    ZHU L Q, WANG C W, WANG Y D, et al. Algorithm of crack images matching by feature points set distance description[J]. Chinese Journal of Scientific Instrument, 2016, 37 (12): 2851-2857. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201612027.htm
    [14]
    MOREL J M, YU G. ASIFT: A new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-469. doi: 10.1137/080732730
    [15]
    胡钊政, 陶倩文, 黄刚, 等. "道路指纹"关键技术及其在智能车路系统中的应用[J]. 交通信息与安全, 2020, 38(5): 39-49. doi: 10.3963/j.jssn.1674-4861.2020.05.005

    HU Z Z, TAO Q W, HUANG G, et al. A road fingerprint: Key technologies and applications for intelligent vehicles and infrastructure systems(IVIS)[J]. Journal of Transport Information and Safety, 2020, 38(5): 39-49. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.05.005
    [16]
    李超峰. 路面裂缝图像拼接技术研究[D]. 西安: 西安电子科技大学, 2019.

    LI C F. Research on pavement crack image stitching technology[D]. Xi'an: Xidian University, 2019. (in Chinese)
    [17]
    RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]. 2011 International Conference on Computer Vision, Barcelona, Spain: IEEE, 2011.
    [18]
    姜吉荣. 基于图像分析的路面裂缝检测方法与识别研究[D]. 南京: 南京邮电大学, 2016.

    JIANG J R. Research on pavement crack detection method and recognition based on image analysis[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2016. (in Chinese)
    [19]
    瞿中, 林丽丹, 郭阳. 形态学与区域延伸相结合的图像裂缝检测算法研究[J]. 计算机科学, 2014, 41(11): 297-300. doi: 10.11896/j.issn.1002-137X.2014.11.058

    QU Z, LIN L D, GUO Y. Algorithm of image crack detection based on morphology and region extends[J]. Computer Science, 2014, 41(11): 297-300. (in Chinese) doi: 10.11896/j.issn.1002-137X.2014.11.058
    [20]
    张娟, 沙爱民, 孙朝云, 等. 基于相位编组法的路面裂缝自动识别[J]. 中国公路学报, 2008, 21(2): 39-42. doi: 10.3321/j.issn:1001-7372.2008.02.008

    ZHANG J, SHAA M, SUN CY, et al. Pavement crack automatic recognition based on phase-grouping method[J]. China Journal of Highway and Transport, 2008, 21 (2): 39-42(. inchinese doi: 10.3321/j.issn:1001-7372.2008.02.008
    [21]
    MIGUEL G, DAVID B, OSCAR M, et al. Adaptive road crack detection system by pavement classification[J]. Sensors, 2011, 11(10): 9628-9657. doi: 10.3390/s111009628
    [22]
    李清泉, 胡庆武. 基于图像自动匀光的路面裂缝图像分析方法[J]. 公路交通科技, 2010, 27(4): 1-5. doi: 10.3969/j.issn.1002-0268.2010.04.001

    LI Q Q, HU Q W. A pavement crack image analysis approach based on automatic image dodging[J]. Journal of Highway and Transportation Research and Development, 2010, 27(4): 1-5. (in Chinese) doi: 10.3969/j.issn.1002-0268.2010.04.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (886) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return