Citation: | ZHANG Zhihua, DENG Yanxue, ZHANG Xinxiu. A Method for Detecting and Differentiating Asphalt Pavement Distress Based on an Improved SegNet Algorithm[J]. Journal of Transport Information and Safety, 2022, 40(3): 127-135. doi: 10.3963/j.jssn.1674-4861.2022.03.013 |
[1] |
马建, 赵祥模, 贺拴海, 等. 路面检测技术综述[J]. 交通运输工程学报, 2017, 17(5): 121-137. doi: 10.3969/j.issn.1671-1637.2017.05.012
MA J, ZHAO X M, HE S H, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.05.012
|
[2] |
ZOU Q, CAO Y, LI Q, et al. CrackTree: Automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238. doi: 10.1016/j.patrec.2011.11.004
|
[3] |
KIRSCHKE K R, VELINSKY S A. Histogram-based approach for automated pavement crack sensing[J]. Transportation Engineering, 1992, 118(5): 700-710. doi: 10.1061/(ASCE)0733-947X(1992)118:5(700)
|
[4] |
李清泉, 邹勤, 毛庆洲. 基于最小代价路径搜索的路面裂缝检测[J]. 中国公路学报, 2010, 23(6): 28-33. doi: 10.3969/j.issn.1001-7372.2010.06.005
LI Q Q, ZOU Q, MAO Q Z. Pavement crack detection based on minimum cost path searching[J]. China Journal of Highway and Transport, 2010, 23(6): 28-33. (in Chinese) doi: 10.3969/j.issn.1001-7372.2010.06.005
|
[5] |
ABDEL-QADER I, ABUDAYYEH O, KELLY M E. Analysis of edge-detection techniques for crack identification in bridges[J]. Journal of Computing in Civil Engineering, 2003, 17 (4): 255-263. doi: 10.1061/(ASCE)0887-3801(2003)17:4(255)
|
[6] |
KAMALIARDAKANI M, SUN L, ARDAKANI M K. Sealed crack detection algorithm using heuristic thresholding approach[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 04014110. doi: 10.1061/(ASCE)CP.1943-5487.0000447
|
[7] |
HU Y, ZHAO C X. A local binary pattern-based method for pavement crack detection[J]. Pattern Recognit, 2010, 5(1): 140-147. doi: 10.13176/11.167
|
[8] |
ZALAMA E, GOMEZ-GARCIA-BERMEJO J, MEDINA R. et al. Road crack detection using visual features extracted by Gabor filters[J]Computer-Aided Civil and Infrastructure Engineering, 2014, 29(5): 342-358. doi: 10.1111/mice.12042
|
[9] |
SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forest[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12), 3434-3445. doi: 10.1109/TITS.2016.2552248
|
[10] |
NEJAD F M, ZAKERI H. A comparison of multiresolution methods for detection and isolation of pavement distress[J]. Expert Systems with Applications, 2011, 38(3): 2857-2872. doi: 10.1016/j.eswa.2010.08.079
|
[11] |
CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-37. doi: 10.1111/mice.12263
|
[12] |
DORAFSHAN S, THOMAS R J, MAGUIRE M. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete[J]. Construction and Building Materials, 2018(186): 1031-1045.
|
[13] |
沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001
SHA A M, TONG Z, GAO J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transportation, 2018, 31(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.01.001
|
[14] |
ZHANG L, YANG F, ZHANG Y D. et al. Road crack detection using deep convolutional neural network[C]. IEEE International Conference on Image Processing, Phoenix: IEEE, 2016.
|
[15] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683
|
[16] |
景庄伟, 管海燕, 彭代峰, 等. 基于深度神经网络的图像语义分割研究综述[J]. 计算机工程, 2020, 46(10): 1-17. doi: 10.3778/j.issn.1002-8331.2001-0320
JING Z W, GUAN H Y, PENG D F, et al. Survey of research in image semantic segmentation based on deep neural network[J]. Computer Engineering, 2020, 46(10): 1-17. (in Chinese) doi: 10.3778/j.issn.1002-8331.2001-0320
|
[17] |
HUANG H W, LI Q T, ZHANG D M. Deep learning-based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018(77): 166-176.
|
[18] |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. The European Conference on Computer Vision, Cham: Springer, 2018.
|
[19] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. doi: 10.1109/TPAMI.2016.2644615
|
[20] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. International Conference on Medical image computing and computer-assisted intervention, Cham: Springer, 2015.
|
[21] |
YU C Q, WANG J, PENG C. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C]. 15th European Conference in Computer Science, Cham: Springer, 2018.
|
[22] |
BANG S, PARK S, KIM H, et al. Encoder-decoder network for pixel-level road crack detection in black-box images[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(8): 713-727. doi: 10.1111/mice.12440
|
[23] |
XUE L L, LIANG K D, LI W, et al. FPGA accelerates deep residual learning for image recognition[C]. IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference, Chengdu: IEEE, 2017.
|
[24] |
ZEILER M D, FERGUS R. Visualizing and understandingconvolutional networks[C]. European Conference on Computer Vision, Cham, Switzerland: Springer, 2014.
|
[25] |
WANG Y K, HUANG W B. A CUDA-enabled parallel algorithm for accelerating retinex[J]. Journal of Real-Time Image Processing, 2014, 9(3): 407-425. doi: 10.1007/s11554-012-0301-6
|
[26] |
侯越, 陈逸涵, 顾兴宇, 等. 基于卷积自编码的沥青路面目标与裂缝智能识别[J]. 中国公路学报, 2020, 206(10): 292-307. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202010023.htm
HOU Y, CHEN Y H, GU X Y, et al. Automatic identification of pavement objects and cracks using the convolutional auto-encoder[J]. China Journal of Highway and Transport, 2020, 206(10): 292-307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202010023.htm
|
[27] |
RIZZI A, GATTA C, MARINI D. A new algorithm for unsupervised global and local color correction[J]. Pattern Recognition Letters, 2003, 24(11): 1663-1677. doi: 10.1016/S0167-8655(02)00323-9
|
[28] |
王鹏, 神和龙, 尹勇, 等. 基于深度学习的船舶驾驶员疲劳检测算法[J]. 交通信息与安全, 2022, 40(1): 1-9. doi: 10.3963/j.jssn.1674-4861.2022.01.008
WANG P, SHEN H L, YIN Y, et al. A detection algorithm for the fatigue of ship ffficers based on deep learning technique[J]. Journal of Transport Information and Safety, 2022, 40(1): 1-9. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.008
|
[29] |
KASTHURIRANGAN G, SIDDHARTHA K K, ALOK C, et al. Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection[J]. Construction and Building Materials, 2017 (157): 322-330.
|
[30] |
MANDAL V, UONG L, ADU G Y. Automated road crack detection using deep convolutional neural networks[C]. IEEE International Conference on Big Data, Seattle: IEEE, 2018.
|
[31] |
HANG K, CHENG H D, ZHANG B. Unified approach to pavement crack and sealed crack detection using pre-classification based on transfer learning[J]. Journal of Computing in Civil Engineering, 2018, 32(2): 04018001/1-12. doi: 10.1061/(ASCE)CP.1943-5487.0000736
|
[32] |
CHEN T Y, CAI Z H, ZHAO X. et al. Pavement crack detection and recognition using the architecture of segNet[J]. Journal of Industrial Information Integration, 2020, 18(2): 1-12.
|
[33] |
徐辉, 祝玉华, 甄彤, 等. 深度神经网络图像语义分割方法综述[J]. 计算机科学与探索, 2021, 15(1): 47-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202101003.htm
XU H, ZHU Y H, ZHEN T, et al. Survey of image semantic segmentation methods based on deep neural network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 47-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202101003.htm
|