Volume 40 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
CAO Shuchao, SUN Feiyang, LI Yang. A Cellular Automaton Simulation Model Considering Spatial-temporal Distribution for Mixed Bicycle Flows[J]. Journal of Transport Information and Safety, 2022, 40(2): 98-107. doi: 10.3963/j.jssn.1674-4861.2022.02.012
Citation: CAO Shuchao, SUN Feiyang, LI Yang. A Cellular Automaton Simulation Model Considering Spatial-temporal Distribution for Mixed Bicycle Flows[J]. Journal of Transport Information and Safety, 2022, 40(2): 98-107. doi: 10.3963/j.jssn.1674-4861.2022.02.012

A Cellular Automaton Simulation Model Considering Spatial-temporal Distribution for Mixed Bicycle Flows

doi: 10.3963/j.jssn.1674-4861.2022.02.012
  • Received Date: 2021-09-21
    Available Online: 2022-05-18
  • Traditional cellular automata(CA)models provide inaccurate simulation results in modeling non-motorized traffic flow, due to the fact that they subjectively define spatial-temporal parameters and roughly represent bicycle lanes. With this, an improved CA model is proposed in this paper. Specifically, the grid density and time step of the proposed model are upgraded based on the updating rules of a NaSch model, which considers the conflict between heterogeneous bicycles and the dynamic lane-changing behavior in a two-dimensional space. In the proposed model, bicycles that need to make lane-changing can change to a lateral position which meets the condition of safe lateral and the forward movement. The bicycle can change lanes to the optimal position considering both the forward and lateral distance of each position. In addition, the influence of different spatial-temporal parameters on simulation results is quantified under the period boundary condition. Data from Zhengdong Road in Zhenjiang is obtained, and the spatial-temporal diagrams of trajectories are generated and with which the reliability of the proposed model is verified at both the macro and micro levels. Study results are supportive for the following conclusions. First, grid density and time step have a significant impact on the simulated flows and they are positively correlated with the longitudinal grid density but negatively correlated with the lateral grid density, and their global grid density is the compound effect of the two densities. Second, the flow is almost unaffected by the size of time step when the occupancy rate is around 0.1, but when the occupancy rates is around 0.3, 0.5, or 0.7, the bicycle flow shows similar trend that first increase and then decrease with the increment of time step. Third, moderate lane-changing behavior of bicycles can improve road capacity, while frequent lane-changing behavior would lead to congestion. Significant differences in the spatial-temporal diagrams of trajectories are found under different occupancy conditions, and bicycle flows with a high density would lead to stop-and-go condition. Fourth, when the global grid density is 5 and the time step is 0.5 s, the accuracy is highest, where the mean absolute percentage error(MAPE)between simulated results and observed data is only 14.84%.

     

  • loading
  • [1]
    杨龙海, 张春, 仇晓赟, 等. 车辆跟驰模型研究进展[J]. 交通运输工程学报, 2019, 19(5): 125-138. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201905015.htm

    YANG L H, ZHANG C, CHOU X Y, Research progress on car-following models[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 125-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201905015.htm
    [2]
    SUTOMO H. Appropriate saturation flow at traffic signals in Javanese cities a modelling approach[J]. Chemistry-A European Journal, 1992, 15(4): 885-900.
    [3]
    李星星, 马健霄, 徐佳逸. 非机动车跟驰模型的研究[J]. 交通运输工程与信息学报, 2012, 10(1): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC201201019.htm

    LI X X, MA J X, XU J Y. Study on non-motorized vehicle-following model[J]. Journal of Transportation Engineering and Information, 2012, 10(1): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC201201019.htm
    [4]
    周泱, 周竹萍, 徐永能, 等. 交叉口绿闪信号行人过街行为模型[J]. 交通信息与安全, 2018, 36(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201801011.htm

    ZHOU Y, ZHOU Z P, XV Y N, et al. A model for crossing behaviors of pedestrians at intersections during flashing green signals[J]. Journal of Transport Information and Safety, 2018, 36(1): 74-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201801011.htm
    [5]
    杨文彦, 张希, 陈浩, 等. 基于社会力的自动驾驶汽车行人轨迹预测模型[J]. 公路交通科技, 2020, 37(8): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202008016.htm

    YANG W Y, ZHANG X, CHENG H, et al. A model of pedestrian trajectory prediction for autonomous vehicles based on social force[J]. Journal of Highway and Transportation Research and Development, 2020, 37(8): 127-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202008016.htm
    [6]
    王占中, 赵利英, 焦玉玲, 等. 信号交叉口自行车和行人混合交通流社会力模型[J]. 吉林大学学报(工学版), 2018, 48(1): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201801011.htm

    WANG Z Z, ZHAO L Y, JIAO Y L, et al. Social force model of pedestrain-bike mixed flow at signlized crosswalk[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(1): 89-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201801011.htm
    [7]
    NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. Journal De Physique I, 1992, 2(12): 221-2229.
    [8]
    TANG T Q, RUI Y X, ZHANG J, et al. A cellular automation model accounting for bicycle's group behavior[J]. Physica A: Statistical Mechanics and its Applications, 2018(492): 1782-1797.
    [9]
    文夏梅, 傅立平, 钟鸣, 等. 城市混合交通共享街道驾驶行为及行人过街安全研究[J]. 交通信息与安全, 2020, 38(5): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202005005.htm

    WEN X M, FU L P, ZHONG M, et al. Analysis of driving behaviors and pedestrian crossing safety on urban roadway with mixed traffic flow[J]. Journal of Transport Information and Safety, 2020, 38(5): 12-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202005005.htm
    [10]
    LI Y X, NI Y, SUN J, et al. Modeling the illegal lane-changing behavior of bicycles on road segments: Considering lane-changing categories and bicycle heterogeneity[J]. Physica A: Statistical Mechanics and its Applications, 2020(541): 123302.
    [11]
    LIU M F, XIONG S W. A refined and dynamic cellular automaton model for pedestrian-vehicle mixed traffic flow[J]. International Journal of Modern Physics C, 2016, 27(5): 1650053.
    [12]
    邝先验, 吴赟, 曹韦华, 等. 城市混合非机动车流的元胞自动机仿真模型[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSF201501002.htm

    KUANG X Y, WU Y, CAO W H, et al. Cellular automata simulation model for urban mixed non-motor vehicle flow[J]. Journal of Guangxi Normal University: Natural Science Edition, 2015, 33(1): 7-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXSF201501002.htm
    [13]
    邝先验, 曹韦华, 吴赟. 考虑混入逆行车辆的非机动车流元胞自动机模型[J]. 系统仿真学报, 2016, 28(2): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201602002.htm

    KUANG X Y, WU Y, CAO W H, et al. Cellular automata model of non-motor vehicle flow considering reverse vehicles[J]. Journal of System Simulation, 2016, 28(2): 268-274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201602002.htm
    [14]
    冯雪, 王喜富. 考虑自行车流特性的机非混合交通流元胞自动机仿真[J]. 公路交通科技, 2016, 33(3): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201603022.htm

    FENG X, WANG X F. Simulation of mixed traffic flow by cellular automaton considering bicycle flow characteristics[J]. Journal of Highway and Transportation Research and Development, 2016, 33(3): 132-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201603022.htm
    [15]
    NISHINARI K, TAKAHASHI D. A new deterministic CA model for traffic flow with multiple states[J]. Journal of Physics A: Mathematical and General, 1999, 32(1): 93-104.
    [16]
    NISHINARI K, TAKAHASHI D. Multi-value cellular automaton models and metastable states in a congested phase[J]. Journal of Physics A: Mathematical and General, 2000(33): 7709.
    [17]
    张兴强, 汪滢, 胡庆华. 交叉口混合交通流元胞自动机模型及仿真研究[J]. 物理学报, 2014, 63(1): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201401011.htm

    ZHANG X Q, WANG Y, HU Q H. Research and simulation on cellular automaton model of mixed traffic flow at intersection[J]. Acta Physica Sinica, 2014, 63(1): 90-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201401011.htm
    [18]
    XUE S Q, JIA B, JIANG R, et al. An improved Burgers cellular automaton model for bicycle flow[J]. Physica A: Statistical Mechanics and its Applications, 2017(487): 164-177.
    [19]
    JIN S, QU X, XU C, et al. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow[J]. Physics Letters A, 2015, 379(39): 2409-2416.
    [20]
    夏亮, 郭廷龙, 刘仰, 等. 基于多值CA模型的两轮车加速过程建模与分析[J]. 公路交通科技, 2017, 34(1): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201701017.htm

    XIA L, GUO Y L, LIU Y, et al. Simulation and analysis of two-wheel vehicle acceleration based on multi-value CA model[J]. Journal of Highway and Transportation Research and Development, 2017, 34(1): 112-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201701017.htm
    [21]
    严巧兵. 基于社会力模型的非机动车混合流仿真研究[D]. 北京: 北京建筑大学, 2020.

    YAN Q B. Research on mixed non-motorized flow simulation based on social force model[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (1033) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return