Citation: | HUANG Ling, HONG Peixin, WU Zerong, LIU Jianrong, HUANG Zixu, CUI Zuan. A Detection Method for Drivers' Fatigue States Based on Normalization of Epidemic Prevention[J]. Journal of Transport Information and Safety, 2021, 39(4): 26-34. doi: 10.3963/j.jssn.1674-4861.2021.04.004 |
[1] |
SIKANDER G, ANWAR S. Driver fatigue detection systems: a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2339-2352. doi: 10.1109/TITS.2018.2868499
|
[2] |
柴萌. 长途客车驾驶员疲劳状态辨识与预警[D]. 长春: 吉林大学, 2019.
CAI Meng. Identification and early-warning of fatigue state of intercity coach drivers[D]. Changchun: Jilin University, 2019. (in Chinese).
|
[3] |
国家发展和改革委员会. 关于2020年国民经济和社会发展计划执行情况与2021年国民经济和社会发展计划草案的报告[N]. 人民日报, 2021-03-14(002). National Development and Reform Commission. Report on the implementation of the national economic and social development plan in 2020 and the draft national economic and social development plan in 2021[N]. People's Daily, 2021-03-14(002). (in Chinese).
|
[4] |
李科勇. 考虑驾驶风格的驾驶人疲劳驾驶辨识方法研究[D]. 长春: 吉林大学, 2017.
LI Keyong. Research on drowsiness driving detection considering driving style[D]. Changchun: Jilin University, 2017. (in Chinese).
|
[5] |
裴玉龙, 金英群, 陈贺飞. 基于脑电信号分析的不同年龄驾驶人疲劳特性[J]. 中国公路学报, 2018, 31(4): 59-65+77 doi: 10.3969/j.issn.1001-7372.2018.04.008
PEI Yulong, JIN Yingqun, CHEN Hefei. Fatigue characteristics in drivers of different ages based on analysis of EEG[J]. China Journal of Highway and Transport, 2018, 31(4): 59-65+77. doi: 10.3969/j.issn.1001-7372.2018.04.008
|
[6] |
DENG W, WU R. Real-time driver-drowsiness detection system using facial features[J]. IEEE Access, 2019(7): 118727-118738. http://ieeexplore.ieee.org/document/8808931/
|
[7] |
SELVAKUMAR K, JOVITHA J, KUMAR R et al. Real-time vision based driver drowsiness detection using partial least squares analysis[J]. Journal of Signal Processing Systems for Signal Image and Video Technology, 2016, 85(2): 263-274. doi: 10.1007/s11265-015-1075-4
|
[8] |
MONA O, SHERVI S, SHABNAM A, et al. Yawning detection using embedded smart cameras[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(3): 570-582. doi: 10.1109/TIM.2015.2507378
|
[9] |
田璐萍, 嵇启春. 基于眼部信息融合的疲劳驾驶检测的研究[J]. 国外电子测量技术, 2019, 38(10): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL201910006.htm
TIAN Luping, JI Qichun. Study on fatigue driving test based on eye information fusion[J]. Foreign Electronic Measurement Technology, 2019, 38(10): 26-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL201910006.htm
|
[10] |
李文学, 谢凯. 基于深度学习的疲劳驾驶检测方法研究[J]. 电子世界, 2019(17): 51-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ELEW201917029.htm
LI Wenxue, XIE Kai. Research on fatigue driving detection method based on deep learning[J]. Electronics World, 2019(17): 51-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ELEW201917029.htm
|
[11] |
曾心远, 张正华, 韩雪等. 基于机器学习的疲劳检测及预警系统设计[J]. 物联网技术, 2019, 9(7): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-WLWJ201907010.htm
ZENG Xinyuan, ZHANG Zhenghua, HANG Xue, et al. Design of fatigue detection and early warning system based on machine learning[J]. Internet of Things Technologies, 2019, 9(7): 27-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLWJ201907010.htm
|
[12] |
BERGASA L M, NUEVO J, SOTELO M A, et al. Real-time system for monitoring driver vigilance[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 63-77. doi: 10.1109/TITS.2006.869598
|
[13] |
ANDREA NVERONIKA S. Multimodal features for detection of driver stress and fatigue: Review[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3214-3233. doi: 10.1109/TITS.2020.2977762
|
[14] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA: IEEE, 2005.
|
[15] |
KAZEMI, VAHID, SULLIVAN, et al. One millisecond face alignment with an ensemble of regression trees[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio: IEEE, 2014.
|
[16] |
CAFFIER P, ULLSPERGER P, ERDMANN U. Experimental evaluation of eye-blink parameters as a drowsiness measure[J]. European Journal of Applied Physiology, 2003, 89(3/4): 319-325. http://www.onacademic.com/detail/journal_1000034466173110_b0fa.html
|
[17] |
HUANG Rui, WANG Yan, LI Zijian, et al. RF-DCM: Multi-granularity deep convolutional model based on feature recalibration and fusion for driver fatigue detection[J/OL]. (2020-07)[2021-08-09]. https://ieeexplore.ieee.org/document/9185000.
|