Volume 39 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
HU Cheng, HUANG Helai, LI Xintong, HAN Chunyang, JIANG Qianshan, YANG Qiushi. Travel Decision-making Behaviors of Urban Electric Bicycle Users Considering Psychological Latent Variables[J]. Journal of Transport Information and Safety, 2021, 39(3): 111-120. doi: 10.3963/j.jssn.1674-4861.2021.03.014
Citation: HU Cheng, HUANG Helai, LI Xintong, HAN Chunyang, JIANG Qianshan, YANG Qiushi. Travel Decision-making Behaviors of Urban Electric Bicycle Users Considering Psychological Latent Variables[J]. Journal of Transport Information and Safety, 2021, 39(3): 111-120. doi: 10.3963/j.jssn.1674-4861.2021.03.014

Travel Decision-making Behaviors of Urban Electric Bicycle Users Considering Psychological Latent Variables

doi: 10.3963/j.jssn.1674-4861.2021.03.014
  • Received Date: 2021-01-26
  • This paper aims to explore electric bicycle users'behavioral responses to different management policies of electric bicycles issued in 2018.A survey is conducted to collect socio-demographic characteristics, travel habits, psychological characteristics of electric bicycle users, and their decision-making against different policies.A multiple indicators and multiple causes model is constructed considering several latent variables such as policy acceptability to obtain the fitted value of the latent variables.Then a hybrid choice model taking the latent variables as explanatory variables is applied to analyze the impacts of social-demographic related variables, travel habit variables, and psychological latent variables on the travel decision of electric bicycle users.The results show that: ①The psychological characteristics of electric bicycle users significantly affect their travel decision-making, and travelers with higher policy acceptability tend to adopt positive behaviors.②Economic factors prompt the travelers to continue to use illegal electric bicycles or violate the policy.③Subsidies for scraping illegal electric bicycles can neutralize the impact ofeconomic factors on decision-making and can promote low-income families to purchase electric bicycles fitting the standard.④The implementation of the policy will promote the mode switching from electric-bicycle traffic to car traffic.

     

  • loading
  • [1]
    高纯. 信号交叉口电动自行车闯红灯行为影响因素研究[D]. 北京: 中国人民公安大学, 2020.

    GAO Chun. Research of the influencing factors of red-Light running behavior of e-bike[D]. Beijing: People's Public Security University of China, 2020. (in Chinese).
    [2]
    柏璐. 城市道路电动自行车交通特性与安全影响研究[D]. 南京: 东南大学, 2017.

    BAI Lu. Research on traffic characteristics and safety effect of electric bicycle in urban street[D]. Nanjing: Southeast University, 2017. (in Chinese).
    [3]
    WEINERT J, MA C, CHERRY C. The transition to electric bikes in China: History and key reasons for rapid growth[J]. Transportation, 2007, 34(3): 301-318. doi: 10.1007/s11116-007-9118-8
    [4]
    NORDFJRN T, RUNDMO T. Environmental norms, transport priorities and resistance to change associated with acceptance of push measures in transport[J]. Transport Policy, 2015(44): 1-8. http://www.sciencedirect.com/science/article/pii/S0967070X15300317
    [5]
    SUN Xianglong, FENG Shumin, LU Jian. Psychological factors influencing the public acceptability of congestion pricing in China[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016(41): 104-112.
    [6]
    WANG Lanlan, XU Jintao, QIN Ping. Will a driving restriction policy reduce car trips?The case study of Beijing, China[J]. Transportation Research Part A: Policy and Practice, 2014(67): 279-290. http://www.sciencedirect.com/science/article/pii/S0965856414001797
    [7]
    LIU Zhiyong, LI Ruimin, WANG Xiaokun, et al. Noncompliance behavior against vehicle restriction policy: A case study of Langfang, China[J]. Transportation Research Part A: Policy and Practice, 2020(132): 1020-1033. http://www.sciencedirect.com/science/article/pii/S0965856419305580
    [8]
    GUO Yuntao, WANG Jian, PEETA S, et al. Personal and societal impacts of motorcycle ban policy on motorcyclists'home-to-work morning commute in China[J]. Travel Behaviour and Society, 2020(19): 137-150. http://www.sciencedirect.com/science/article/pii/S2214367X19303151
    [9]
    JIA Ning, ZHANG Yidan, HE Zhengbing, et al. Commuters'acceptance of and behavior reactions to license plate restriction policy: A case study of Tianjin, China[J]. Transportation Research Part D: Transport and environment, 2017(52): 428-440. http://www.sciencedirect.com/science/article/pii/S1361920915301917
    [10]
    COOLS M, BRIJS K, TORMANS H, et al. The socio-cognitive links between road pricing acceptability and changes in travel-behavior[J]. Transportation Research Part A: Policy and Practice, 2011, 45(8): 779-788. doi: 10.1016/j.tra.2011.06.006
    [11]
    ROSE G. E-bikes and urban transportation: emerging issues and unresolved questions[J]. Transportation, 2012, 39(1): 81-96. doi: 10.1007/s11116-011-9328-y
    [12]
    GUO Yanyong, LI Zhibin, WU Yao, et al. Evaluating factors affecting electric bike users'registration of license plate in China using Bayesian approach[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018(59): 212-221. http://www.sciencedirect.com/science/article/pii/S1369847816304673
    [13]
    张鹏辉. 常规公交与城市轨道交通出行方式转移行为研究[D]. 长安: 长安大学, 2012.

    ZHANG Penghui. Study of travel mode shift between regular public bus and urban rail transit[D]. Chang'an: Chang'an University, 2012. (in Chinese).
    [14]
    BHAT C R, DUBEY S K. A new estimation approach to integrate latent psychological constructs in choice modeling[J]. Transportation Research Part B: Methodological, 2014(67): 68-85. http://www.sciencedirect.com/science/article/pii/S0191261514000678
    [15]
    VIJ A, WALKER J L. How, when and why integrated choice and latent variable models are latently useful[J]. Transportation Research Part B: Methodological, 2016(90): 192-217. http://www.sciencedirect.com/science/article/pii/S019126151630234X
    [16]
    SCHWARTZ S H. Normative influe-nces on altruism[J]. Advances in Experimental Social Psychology, 1977(10): 221-279. http://www.sciencedirect.com/science/article/pii/S0065260108603585
    [17]
    AJZEN I. The theory of planned behavior[J]. Organizational Behavior & Human Decision Processes, 1991, 50(2): 179-211.
    [18]
    陈月霞, 陈龙, 查奇芬等. 基于低碳心理潜变量Logit模型的出行方式预测模型[J]. 公路交通科技, 2017, 34(9): 100-108+137. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201709015.htm

    CHEN Yuexia, CHEN Long, CHA Qifen, et al. A travel mode forecasting model based on low-carbon psycho-logical latent variable logit model[J]. Journal of Highway and Transportation Research and Development, 2017, 34(9): 100-108+137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201709015.htm
    [19]
    WEI Longyu, XIN Feifei, AN Kang, et al. Comparison study on travel characteristics between two kinds of electric bike[J]. Procedia-Social and Behavioral Sciences, 2013(96): 1603-1610. http://www.sciencedirect.com/science/article/pii/S1877042813023082
    [20]
    CHERRY C, YANG Hongtai, JONES L, et al. Dynamics of electric bike ownership and use in Kunming, China[J]. Transport Policy, 2016(45): 127-135. http://www.sciencedirect.com/science/article/pii/S0967070X15300524
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (402) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return