留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于船舶轨迹挖掘的海上航路网络构建方法

项迪 黄亮 周春辉 文元桥 黄亚敏 戴红良

项迪, 黄亮, 周春辉, 文元桥, 黄亚敏, 戴红良. 基于船舶轨迹挖掘的海上航路网络构建方法[J]. 交通信息与安全, 2023, 41(3): 69-79. doi: 10.3963/j.jssn.1674-4861.2023.03.008
引用本文: 项迪, 黄亮, 周春辉, 文元桥, 黄亚敏, 戴红良. 基于船舶轨迹挖掘的海上航路网络构建方法[J]. 交通信息与安全, 2023, 41(3): 69-79. doi: 10.3963/j.jssn.1674-4861.2023.03.008
XIANG Di, HUANG Liang, ZHOU Chunhui, WEN Yuanqiao, HUANG Yamin, DAI Hongliang. A Method of Constructing Maritime Route Network Based on Ship Trajectory Mining[J]. Journal of Transport Information and Safety, 2023, 41(3): 69-79. doi: 10.3963/j.jssn.1674-4861.2023.03.008
Citation: XIANG Di, HUANG Liang, ZHOU Chunhui, WEN Yuanqiao, HUANG Yamin, DAI Hongliang. A Method of Constructing Maritime Route Network Based on Ship Trajectory Mining[J]. Journal of Transport Information and Safety, 2023, 41(3): 69-79. doi: 10.3963/j.jssn.1674-4861.2023.03.008

基于船舶轨迹挖掘的海上航路网络构建方法

doi: 10.3963/j.jssn.1674-4861.2023.03.008
基金项目: 

海南省科技计划三亚崖州湾科技城自然科学基金联合项目 2021JJLH0012

浙江省重点研发计划 2021C01010

国家重点研发计划项目 2021YFB2600300

详细信息
    作者简介:

    项迪(1996—),硕士研究生. 研究方向:船舶轨迹数据挖掘、船舶行为分析. E-mail: 512074281@qq.com

    通讯作者:

    黄亮(1986—),博士,副研究员. 研究方向:海事大数据等. E-mail: leung.huang@whut.edu.cn

  • 中图分类号: U675.7;TP311

A Method of Constructing Maritime Route Network Based on Ship Trajectory Mining

  • 摘要: 海上航路网络是船舶海上交通活动特征的时空表征,也是船舶航路规划、行为辨识、轨迹预测的重要基础。海量的船舶历史轨迹数据为自动提取海上航路网络提供了基础数据,但受轨迹数据噪声和密度分布不均匀的影响,传统航路网络自动提取方法存在网络节点识别准确性差、网络边连接错误率高等问题。针对上述问题,研究了1种基于船舶轨迹时空特征挖掘的海上航路网络自动构建方法。定义了海上航路网络的3种航路点类型,即停留点、出入点和航路转向点,设计了基于轨迹时空特征的航路点提取方法;提出了基于累计转向特征的航路转向点过滤策略,可有效去除船舶避碰、船舶徘徊等局部活动产生的非航路转向点;根据不同种类航路点的分布特征,综合利用DBSCAN聚类算法和凸包算法从航路点集合中提取和生成航路网络节点集合;定义了航路网络节点的有效连接规则,从原始轨迹中提取航路网络节点之间的轨迹簇,根据轨迹簇的统计特征生成航路网络节点之间的有向加权边,形成有向加权的海上航路网络。以珠江口水域为实验区域,对所提方法进行有效性验证,结果表明:所提方法可提取71个3类航路网络节点和200条航路路线;航路网络节点识别准确率与误识别率分别为86.42%和1.23%;航路网络边连接的准确率接近95%。所提方法能够有效识别海上航路的关键航路点及主要路线,实现航路网络的自动构建。

     

  • 图  1  海上航路网络构建流程

    Figure  1.  The developing process of maritime route network

    图  2  航路转向点识别流程

    Figure  2.  The process of route turning points identification

    图  3  港口码头停留节点提取流程

    Figure  3.  Extraction process of port terminal stop nodes

    图  4  会导致网络边错误连接的2种情况

    Figure  4.  Two situations that can cause the edge to be misconnected

    图  5  珠江口水域集装箱船轨迹图

    Figure  5.  The trajectory of container ships in the waters of the Pearl River Estuary

    图  6  靠泊停留点与锚泊停留点识别结果

    Figure  6.  Identification results of berthing and anchoring points

    图  7  港口码头停留节点及节点区域提取结果

    Figure  7.  Extraction results of port terminal stop nodes and node areas

    图  8  航路转向节点提取

    Figure  8.  Route turning nodes extraction

    图  9  出入点聚类结果

    Figure  9.  Entry and exit points clustering results

    图  10  航路网络节点提取结果

    Figure  10.  The nodes of route network extraction results

    图  11  节点间子航路轨迹提取结果

    Figure  11.  Results of sub-routes trajectory extraction between nodes

    图  12  有向加权航路网络构建结果

    Figure  12.  Directed weighted maritime route network results

    图  13  海上航路网络构建的对比实验

    Figure  13.  Comparative experiment on the extraction of maritime route network

    表  1  转向点分区聚类参数

    Table  1.   Turning point partition clustering parameters

    密度区域 eps/m MinPts
    500 150
    500 50
    800 20
    下载: 导出CSV

    表  2  各等级航路航次范围

    Table  2.   Range of voyages for each class of routes

    航路等级 航次范围/次
    主干航路 (180, ∞)
    次干航路 (90, 180]
    分支航路 (25, 90]
    次支航路 [10, 25]
    下载: 导出CSV

    表  3  不同方法的节点提取实验对比结果

    Table  3.   Comparative results of node extraction experiments using different methods

    构建方法 节点类型 Nide Nmis Nun dnp/m Racc/% Rmis /%
    本文方法 停留 9 0 1 379.92 90 0
    出入 14 0 0 136.79 100 0
    航路转向 48 1 10 282.30 82.46 1.75
    全部节点 71 1 11 266.65 86.42 1.23
    文献[6]方法 停留 10 4 4 1582.92 60 40
    出入 14 0 0 157.84 100 0
    航路转向 42 4 19 568.38 66.67 7.02
    全部节点 66 8 23 635.02 71.60 9.87
    文献[10]方法 停留 6 0 4 793.68 60 0
    出入 13 0 1 288.98 92.86 0
    航路转向 43 4 18 939.53 68.42 7.02
    全部节点 62 4 23 789.01 71.60 4.94
    下载: 导出CSV
  • [1] MOU N, LIU C, ZHANG L, et al. Spatial pattern and regional relevance analysis of the maritime silk road shipping network[J]. Sustainability, 2018, 10(4): 1-13.
    [2] WANG Z, CLARAMUNT C, WANG Y. Extracting global shipping networks from massive historical automatic identification system sensor data: A bottom-up approach[J]. Sensors, 2019, 19(15): 3363. doi: 10.3390/s19153363
    [3] 于海宁, 张宏莉, 余翔湛. 交通网络拓扑结构及特性研究综述[J]. 华中科技大学学报(自然科学版), 2012, 40(增刊1): 274-279. doi: 10.13245/j.hust.2012.s1.007

    YU H N, ZHANG H L, YU X Z. A survey on transportation network topology and its properties[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2012, 40(S1): 274-279. (in Chinese) doi: 10.13245/j.hust.2012.s1.007
    [4] PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection and route prediction[J]. Entropy, 2013, 15(6): 2218-2245.
    [5] VESPE M, VISENTINI I, BRYAN K, et al. Unsupervised learning of maritime traffic patterns for anomaly detection[C]. 9th IET Data Fusion & Target Tracking Conference, London, United Kingdom: IET, 2012.
    [6] VARLAMIS I, KONTOPOULOS I, TSERPES K, et al. Building navigation networks from multi-vessel trajectory data[J]. GeoInformatica, 2021(25): 69-97.
    [7] KONTOPOULOS I, VARLAMIS I, TSERPES K. A distributed framework for extracting maritime traffic patterns[J]. International Journal of Geographical Information Science, 2021, 35(4): 767-792. doi: 10.1080/13658816.2020.1792914
    [8] COSCIA P, BRACA P, MILLEFIORI L M, et al. Multiple Ornstein-Uhlenbeck processes for maritime traffic graph representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2158-2170. doi: 10.1109/TAES.2018.2808098
    [9] FILIPIAK D, WĘCEL K, STRÓŻYNA M, et al. Extracting maritime traffic networks from AIS data using evolutionary algorithm[J]. Business & Information Systems Engineering, 2020, 62(5): 435-450.
    [10] LU N, LIANG M, ZHENG R, et al. Historical AIS data-driven unsupervised automatic extraction of directional maritime traffic networks[C]. 5th International Conference on Cloud Computing and Big DataAnalytics, Chengdu, China: IEEE, 2020.
    [11] RONG H, TEIXEIRA A P, SOARES C G. Data mining approach to shipping route characterization and anomaly detection based on AIS data[J]. Ocean Engineering, 2020(198): 106936.
    [12] ZHANG S K, SHI G Y, LIU Z J, et al. Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity[J]. Ocean Engineering, 2018, 155(MAY 1): 240-250.
    [13] YAN Z J, XIAO Y J, CHENG L, et al. Exploring AIS data for intelligent maritime routes extraction[J]. Applied Ocean Research, 2020(101): 102271.
    [14] DOBRKOVIC A, IACOB M, van HILLEGERSBERG J. Maritime pattern extraction and route reconstruction from incomplete AIS data[J]. International journal of Data science and Analytics, 2018(5): 111-136.
    [15] PRASAD P, VATSAL V, CHOWDHURY R R. Route extraction and automatic information system(AIS)spoofing detection[C]. 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, Bhilai, India: IEEE, 2021.
    [16] XIAO Z, PONNAMBALAM L, FU X, et al. Maritime traffic probabilistic forecasting based on vessels' waterway patterns and motion behaviors[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11): 3122-3134. doi: 10.1109/TITS.2017.2681810
    [17] XIAO Z, FU X J, ZHANG L, et al. Traffic pattern mining and forecasting technologies in maritime traffic service networks: A comprehensive survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(5): 1796-1825.
    [18] 黄亮, 刘益, 文元桥, 等. 基于航行经验的内河稀疏AIS轨迹估计方法[J]. 大连海事大学学报, 2017, 43(3): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201703002.htm

    HUANG L, LIU Y, WEN Y Q. Inland waterway sparse AIS trajectory estimation method based on navigation experience[J]. Journal of Dalian Maritime University, 2017, 43(3): 7-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201703002.htm
    [19] 黄亮, 张治豪, 文元桥, 等. 基于轨迹特征的船舶停留行为识别与分类[J]. 交通运输工程学报, 2021, 21(5): 189-198.

    HUANG L, ZHANG Z H, WEN Y Q. Stopping behavior recognition and classification of ship based on trajectory characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 189-198. (in Chinese).
    [20] PHU Q, NGUYEN V, DO T, et al. PHU Q N P, Nguyen V, Do T, et al. Measuring crowd collectiveness with trajectory smoothing[C]. 1st International Conference on Multimedia Analysis and Pattern Recognition, Ho Chi Minh City, Vietnam: IEEE, 2018.
    [21] 刘立群, 吴超仲, 褚端峰, 等. 基于Vondrak滤波和三次样条插值的船舶轨迹修复研究[J]. 交通信息与安全, 2015, 33 (4): 100-105. doi: 10.3963/j.issn1674-4861.2015.04.016

    LIU L Q, WU C Z, CHU D F, et al. A study of ship trajectory restoration based on vondrak filtering and cubic spline interpolation[J]. Journal of Transport Information and Safety, 2015, 33(4): 100-105. (in Chinese). doi: 10.3963/j.issn1674-4861.2015.04.016
    [22] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]. The 2nd International Conferenceon Knowledge Discovery and DataMining, Portland, USA: AAAI Press, 1996.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  342
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 网络出版日期:  2023-09-16

目录

    /

    返回文章
    返回